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ABSTRACT

A one-dimensional version of a theory of composite materials modeled

as internenetrating solid continua is applied in the analysis of acceleration

waves ir composites containing two identifiable constituents. As expected,

two distinct acceleration waves always propagate except when one of the con-

stituents consists of a chopped fiber. The influence of viscous type damping

is included in only the volumetric interaction between the constituents in

portions uf the treatment. Equations arc derived both for the pro•p•ation

velocities and the varying amplitudes of the disturbance as a function of

the state of the material immediately ahead of the wavefront. These rather

general results are specialized to the case of a homogeneous steady-state

ahead of the fast wave. The various types of behavior possible and the

order of the discontinuities occurring across the wavefront are discussed

in detail for a number of special cases,
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1. Introduction

Recently, a continuum theory of finitely defonnable, heat conducting

composite materials was developed by modeling N identifiable constituents

as interpenetrating solid continua 1, In deriving the general system of

nonlinear equations governing the behavior, the motion of a point of the

combined continuum was permitted to be finite while the relative motior of

the individual constituents was constrained to be infinitesimal in order

that the solid composite not rupturc. The restriction imposed in Ref.1 which

demands that the relative motion of the constituents be infinitesimal is

one of the features that distinguishes this theory from other work2-6 on

composites. AnLother important feature distinguishing the description in

2-8Ref.1 from that of the other work2- is that r.o energy of interaction be-

twue the ,.wt.itcen,, , is emittcý in Ref.1 as it is in the other work.

In this payer we specialize the theory developed in Ref.l and consider

the one-dimensional motion of a two constituent composite material whose

identifiable constituents are elastic, as is the interaction between the

constituents with the exception of the volumetric part. We examine the

behavior of one-dimensional acceleration waves in such media on the assump-

tion that thermodynamic influences may be ignored. In particular we seek

to determine how the behavior of such waves is influenced by (i) the mechan-

ical properties of the mean (center of mass) behavior of the combined com-

posite, (ii) the mechanical properties associated with the relative motion

of the individual constituents, (iii) the coupling between these two motions,

(iv) the relative mass densities of the individual components of the composite,

and, finally, (v) the dynamical conditions prevailing ahead oi the wavefront;

and in certain interesting simplified special cases by (vi) the mechanical
pi• properties of the individual constituents of the composite and (vii) the

1--
IL



2.

coupling effects arising from the volumettic interaction between the elements

of the composite.

Section 2 of this paper is devoted to a brief review of the equations

which govern the one-dimensional motion of two constituent composites.

After recording the global forms of the equations tphich govern the balance

of linear momentum, we state the constitutive equations which govern the

one-dimensional motions of elastic composites which are made up of two

identifiable elastic media. Sections 3 and 4 are devoted to the study of

the prnpagatien of acceleration waves. In Section 3 we show that the

balance laws and constitutive equations set forth in Section 2 imply the

existence, in general, of two distinct types of acceleration waves, the

fast one of which is associated with the mean elasticity of the combined

composite and the slow one with the elasticity associated with the relative

motion of the individual constituents. When the effects of coupling

between the center of mass motion of the combined composite and the rela-

tive motion of the constituents is small, one wave propagates with a velocity

which is close to that of the ordinary elastic wave speed of the combined

composite while the speed of propagation of the second wave is close to

that of the wave of the relative motion of the constituents. The behavior

of waves in a nimiber of highly restrictive special types of composite is

examined in Section. 4. It is shown, in particular, that when one of the

components is a chopped fiber, only one acceleration wave may exist in the

composite and when the interaction between the constituents is purely

volumetric, the two acceleration waves propagate with the respective speeds

of those in the individual constituents.

The manner in which the amplitudes of acceleration waves vary as theyI -traverse the composite is examined in Sections 5 and 6. A standard analysis



3. I
is employed in Section 5 to show that the amplitude of an acceleration wave

satisfies an equation of Dernoul.li type. The various types of behavior

possible in a number of situations, including the possibility of shock

formation, are discussed in Section 6. In the general case where two waves

may exist in the material the behavior of both the "fast" and "slow" waves

is discussed. It is noted that while the medium ahead of the fast wave may

be in a steady state before the arrival of the wave, this condition will

be unlikely to prevail ahead of the "slow" wave because of the motion

induced ahead of this wave by the passage of the precursor. The propaga-

tion of a "fast" wave in a composite which is initially at rest in an

arbitrary permissible state of deformation is examined in detail and it is

shown that the behavior of the amplitude of such a wave is the same as that

of an acceleration wave propagating in a single phase elastic material which

is in a state of nonhomogeneous deform;ation ahead of the wave. A similar

situation prevails when the center of mass deformation is homogeneous but

the deformation fields of the two continua which make up the composite

are not. If the material ahead of the wave is in its natural stress-free

state then it is found that, as far as "fast" waves are concerned, the

material behaves in the same way as would a single phase thermoelastie

mred ium.

The behavior of the amplitudes of acceleration waves in the highly

s cases treated in Section 4,as well as the higher order discontin-

uities induced by some acceleration waves, is also examined in Section 6.

Thus, when the composite is such that the interaction between the consti-

tuents is purely volumetric anr depends only on the relative displacement

of the constituents, the composite behaves, as far as acceleration waves

are concerned, as an elastic material composed solely of one of the
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component continua. In this particular situation, the acceleration of

only one of the components suffers a discontinuity at either of the

waves which may exist and the acceleration of the points of the second

continuum are continuous along with the first order time derivative, but

the second order time derivative of the acceleration of the second con-

tinuum suffers a jump discontinuity at the wavefront. Finally, we examine

the behavior of an acceleration wave propagating in a composite one of

whose component continua is made up of chopped fibers. Only one accel-

eration wave may exist in such a material and the acceleration of the

chopped fiber continuum is continuous at the wavefront. The order of

the discontinuity in the motion of the chopped fiber continuum depends

on the nature of the composite and the conditions prevailing ahead of

the wave. In goneral, the first derivative of the acceleration of the

chopped fiber continuum suffers a jump discontinuity across the wave-

front. On the other hand, if the composite is centrosymmetric and is in

a state of equilibrium ahead of the wave then the first derivative of

the acceleration of the chopped fiber continuum is continuous everywhere

and for all time while the second derivative suffers a jump discontinuity

at the acceleration wave. I
tj

2. Basic Equations for One-Dimensional Motions

We are interested here in studying the motion in one dimension of

a composite consisting of two interpenetrating solid continua. Initially,

the two continua occupy the same region of space and hence the location

of the identifiable components of the composite may be specified by a

- single reference coordinate X. It should be noted thit X specifies the

position of a point of each of the interpenetrating continua at some
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fixed time tO, say. 'The subsequent motion of the composite is described

hy specifying two functions

(.) (1) (2) (2)
y =y (X,t), y -y (X)t) , (2.1)

which give the positions at time t of the points of the two interpenetrating

continua which were simultaneously located at the point X at time t= 0.

We denote the mass density of the ith constituent in the reference con-

(i) (i)
figuration by p and in the current configuration by p The center

of mass, at time t, of the particles of the continua which simultaneously

occupied the point X at time t=Ois given by

S(1)y(1) (,2)y (2)
t) L (Xt) +p Y (Xt) (2.2)

y=y(X) (1) (2)
SP + P

Clearly, Eqs. (2.1) may be written in the form

(W) (1) (2) (2) (2.3)y =y+w (X,t), y =y+w (X,t) (

(i)
where wi (Xt) is the displacement of the point X of the 5th continuum

relative to the center of mass of the points originally at X at time t= 0.

As in Ref.l, we place no restriction on the magnitude of y, but the rela-

(l) (2)
tive displacet.-nts w , i( are taken to be infinitesimal. The deforma-

I, tion gradients at the point X are

-(i) M )(i) I

F =F (X, t) =ýy (Xt) , (i =F (X,t) -xY (X,t) =F+F (2.4)

where
S F(i) Mi

F' = xw (X, t) (2.5)

In (2.4) F is the deformation gradient of the center of mass,F (i) is the

deformation gradient of the point of the ith constituent which was located

at the point X at t=-0 and F(M is the relative deformation gradient of
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this point. Since w (X,t) is an infinitesimal displacement field,

<< IrF and, since mass is conserved separately for eachi constituent,

we have
(i) (i) (i)

P = p (F + )r F (2.6)

-so that we may write

(1) (2)

p=p +p , pFp , (2.7)

(1) (2)po =po +p Po ,

0 0O 0

where p is the total reference mass density of the composite.

Since y(X,t) is the position at time t of the center of mass of the

points of the constituent continua which were at X at t= 0, it follows

from (2.2), (2.3)ý (2.6) and (2.7) that

(1) w(2)(28
rw + = 0 ,(2.8)

weerp(1) 0(2)9

where r = P) /P is assumed to be constant. At this point it should
0 '0 (1) (2)

be noted that p and p do not represent the actual mass densities

of each of the constituents in the composite, but only represent those

quantities in each of the interpenetrating continua, which occupy the

same region ot space and, respectiv!ly, riepresent each cons--t in eh0

model. Suppose that at time t= 0, the ith constituent occupies a fraction

X. of the volume of the constituent so that p =M v 0 , where p ais

the mass density which a body composed solely of the ith constituent

would have. It follows from (2.7) that

o) -o(2• ==xI 0i() + X I+(2)i (2.9)
o 1o 2 o , (29

'* wiler=RX/X 2  whee R-(1) .(2)
0/) 2/p represents the constant ratio of the

actual mass densities of the constituents.

I-L'1<
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The one-dimensional version of the integral forms of the equations

of balance of the composite follows from Eqs. (6.1) and (6.2) of Ref.1 in

the form

x

P ,
x

a t

d- IopoI dX .&(x t) -2 (Xayt) + 3dX, (2.11)

x x

where X X are two arbitrary points in the reference configuration of

the composite and

(1) +Tr(2) (2.12)

(1) (2) (2.13)

T12= (l+r) 1 (2.14)

In (2.12) - (2.14) KPb represent the total stress and the relative stress
coninu~an rspetivly (2)

for the combined continuum, respectively, T and T( are the stresses
SL 12.

for each of the interpenetrating continua, while F is the force

exerted by continuum 2 on continuum 1. In Eqs. (2.10), (2.1) and in what

tfolows a supcrpoweu Cut Cc-notes lcri4.Lal differentiatin: c A(nt')/at..

In addition to the foregoing we have the relevant constitutive

equations0 , which we take in the fonn

K= ^K(FF (1) w (1) (FF (1) (1)

A , (2.15)I (1) W + (FF (i) ()

and we assume that the functions Jt(.,..), (.,.,.) and ;(.,

arc C(2) functions of their arguments. For future reference, we note that

it has been shown in Ref.l that K, and • are related to the stored

.1
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energy density ZF=(FF(1 ),w(1)by the formulae
1,( ) () (1) (1

K= p ( PFF ( w , p Pei (l)7(F, F? w

A = -PoaW (1)E (1), w (2.16)

For a positive rate of entropy production ;7.,.,. ) must be an odd

function of w (1 i.e.

() . . .; - )) , (2.1"7)

and the condition (2.17) implies that ,S(-) has the representation

=a (,., • )) (1),2. )

where g is an even function of w] which must be strictly negativeI-

Undcr certain circunmstanccc it turns out to be cornvenient for interpretive

purposes to take the stored energy 2 in the equivalent form Z= (F

-(2) M)F ,2 w ) then it follcws from Eqs. (2.4), (2.8), (2.12), (2.13) and

(2.16) that

P4 p0 h'(), -2pt(2). (2. 19)

It is clear that the stored energy density may be writtcn in the form

(1)--(i) -( ) (2)-(2) -((2)
P E0 2 = xo (F (1) 2o (F

+ x1 X2 P2 ( ,F(2) ;w (1) , (2.20)

(i-(i),
where 2) (-F ) is the energy density which the body would have at thei
point X if it were composed solely of the ith constituent. The third

term on the right-hand side of (2.20) may be called the interaction energy

density of the constituent continua and it is the presence of this term

which causes coupling between the deformation fields of the constituent

:. . . . . .... . ... .._
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continua which make up the composite. This term is frequently neglected

in the study of composites6 but has been taken into account in the recent

work of MoNiven and Mengi 1in their study of two-phase composites with

linear response.

Equations (2.19) and (2.20) together imply that

-iN iCi+ (12) i=l,2, (2.21)
1 1 1 2F

where
T _p~(i) Z F ) il

Ti 0 F i' i1,2 (2.22)

are the stresses which would arise at the point X ia a single phase

medium composed solely of the ith continuum.

3. Propagation of Acceleration Waves

In one dimension, the motion of a noranaterial surface of discon-

tinuity with respect to the reference coordinates is given by

z - Z (t), (3.1)

where Z(t) denotes the position of the surface in the reference configu-

ration at time t. The intrinsic velocity U of the surface of discontin-

uity is given by

dZ (t)
U(t) = d-•-> 0, (3.2)

and this quantity is a measure of the speed of propagation of the dis-

continuity surface with respect to the reference coordinates of material

points.

SWe use the standard notation to denote the jump in the magnitude

cf a quantity across the propagating surface of discontinuity; thus, if

-1 ._ _ _ __ _ __ _ _ _
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y(X,t) is a quantity which suffers a jump discontinuity at the surface

Z=Z(t) but is a continuous function of (X,t) jointly elsewhere, we

define the jump in cp at time t across the propagating surface of discon-

tinuity to be

[%]=[](t -- %+ (3.3)

where

where -+ p(X,t) . (3.4)

X-Z (t)

Since U(t) > 0, y- and +p , respectively, denote the limiting values of y

inunediately behind and just in front of the propagating surface. Of

course [O] must also obey the kinematical condition of compatibility ,

dd- [pv + (3.5)

Furthermore, we note the formula

!fl ~ 4 *+I] i + cpi [f1 (3.6)

A propagating nonmaterial surface of discontinuity is called an

acceleration wave if y(Xlt) and w kl) (Xt) or, equivalently, y(1) (Xt)

¶n.d2) y ( ,,) h -, theprop,-ies that while y(..(. ) w

.) .,.), F(.,.) and F(1) ( or, equivalently, (1) (. y(2) ,
W (1) (2 (2)

y ( ,.), (2,), F() (., .) and F (.,.) are continuous everywhere,

the second and higher order partial derivatives of the fields y(.,.)

(.,) or(euvaenl (2)
and w or, equivalently, y(1) andy (.,.) SufCor jump dis-

continuities across the propagating surface Z=Z(t), but are continuous

functions of X and t everywhere else. Thus, at an acceleration wave, we

have

Sj m r ]() ] IF (2)0
(3.7)
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The integral forms (2.10), (2.11) of the equations of motion imply

that for all X / Z(t) we have

aXKY p Y, (3.8)

.(1)

,+3=roW , 0

while acroc-j the surface of discontinuity we nave

r[K]J +p U[] =0,

(3.9)
] +rp t 0

"It follows from (2.15), (3.7) and thr assumed continuity of the response

functions that Eqs. (3.9) aec satisfied identically at an acceleration

When the jumpt across the wavefront in Eqs. (3.8) are evaluated we

have

[8K = p o 9 ]
(3.10)

Qirp ýM

It follows from (2.16) that

xK = 2IxF + 32 +' 3

-aF + P X (1) + 
(3.11)

where
(1 1 2ý( (1) w(1)

i=FtK (F., r ,w =po•0 (FF ,w

1 2 2 1 2 11 12 22'XAEI+k2 + 1X2 (al + 2a1 + a22

S(1)( () (1)
bt F(I)K(FFF w & -- • (F,F ,w ()=po 6 'F(1)ziF.F ,w

. =X lF- rX 2 E2 X1 X 2(all+ (I- r)a 1 2 - ra 2 2 3,

a 1 2 21
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C3 2ý W()(F()w(1) ) Fj =- •(Fr I r w(1 ) oFwO)(F,F (i w(1

X2 (a1 +a23
! = k1 2 1a3 + 23)

22 )1)(F FF (I (i) 2 (i)
2w F F PoýF(1)Z ,w ) (3. 12)

2 2
I E1+ X2r E2+ XIX2(all- 2ra 2+r a 2 2)

AWU( ) (1) (1) (1) 1 (1) rj)ý3 = aW) (F-9 ýw(1)5 (F, F(I)0-F() 1 L

12 112 ra 2 3 )

with

Z T.
Fan -- P no sum onfi (3.13)ý- M()

and

= 2T12) ),-(2) (1)
a.. --.( (j ) , - , i,j12 (3.14)

which appear in the last line of each equation in (3.12) are in terms I
"of the aforementioned fully equivalent alternate representation. Since

the coefficients in (3.12) are continuous functions for all X and t, it

follows from (3.11) with the aid of (3.7) that

A ' + F 1 + (y+ i ) -_
A 117;)A.F) +]

(3,. 5)

If we put y=i, F, W(1) and F(I) successively in (3.5), we find that

a ~Y - - UIF]U iŽ 0--xF]_,
a .U 2 ( 1X)

b b=Ew ) ''L =U-UEF F 10- (3.16)

We call a(t) i the mean amplitude of the acceleration wave and say that

the wave is compressive if a > 0, expansive it a < 0. Furthermore, from

1 ' II | Im
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(2.3), (2.8) and (S.16) we note that

Fi =a+b, [y(2)] =a-rb (3.17)

are the amplitudes of the waves experienced by the two identifiable

continua which make up the composite.

The substitution of (3.15) and (3.16) into (3.10) results in the

pair of coupled equations

2 +U+ -1 + 2 -1+2

(U 2-Ya-cv+b=0, -r f2a+(pU2 -r +)b-=0, (3.18)

which admit a nontrivial solution in which a/0, b/ C provided U2 is a

root of the equation

4 2 2 2 2 2
U` - (C +C )U + (C1C 2 - )0 (3.19)

where
a + +

2 1 1 + 2 2 1C1 = - = -(3KF) C...... (AF(O)•)
1 P o F ' C2 Pr por F '+

0 00 0

(3.20)
S1 ~+2 1 + 2 1 ^+2S= T •2 = T " ( • ) = 2- - ( F (J )k + ) 2 ,

p2r 2 p2 r p Fr

pr 0

and we assume that C1 > C2 . Tr-e roots 0t (3. 19) are

+C2 +4 (3.21)

and, since it is clear from (3.20)3 that P > 0, both of the roots (3.21)

will be real. Furthermore, if we assume that

2 2
CC > , >3.22)

S112

then (3.19) implies thi existence of two types of acceleration waves

Swhose speeds of propagation UF, US are given by
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2 1 2 22 22

=-((C +C) + (C +4P (3.23)

and

2 1 2 2 '2 22
2S (Cc +02) -/(C-c2) +44R , (3.24)

respectively. Since C > C it follows at once from (3.22) - (3.24) that

at any point X and time t

UF 2 C and US 2 C (3.25)

with the equalities holding when 5 = 0. The term C1 is the speed one would

calculate from the initial slope of the K-F curve, ( 1 , and thus (3.23)

suggests that the "fast" wave is predominantly associated with the mean
V-lasticity .... th"CmJ. UFmyCCc C ioadrc

composite. 7,e fact that U ay c i ad
cosqec of the Fon 1 irc

.! consequence of the nonlinear coupling effects which arise when P does

not vanish. on the other hand, the "slow" wave always propagates into

a deforming composite behind the "fast" wave and, since ý is the slope

of the -F (1) curve, the "slow" wave is associated with the relative

motion of the constituents.

it has been pointed out by Ni.uZiatu and Wailsh 1 6 i,- a sumuwutaL

different context, that the inequality (3.22) is capable of misrepresenta-

tion. In order that the physical significance of the inequality may be

more fully appreciated we note from Eqs. (2.12), (2.13), (2.16), (2.19) -

(2.22) and (3.20) that

"2 r 2 1 2 1+
C1 =-f-T-Tr VI + - V2 + (2) (all+2'12 +a22- (3.26)

(1 + r) P.

and

2 1 2 + r 2 ¼2 r2a227
2(I + r)1 (1) ll 12 22' .

1 o
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where

2 1 2
V,1 - (1) T 1 2 0 i(2)T 2 , (3.28)

PO Po0

are the intrinsic velocities which acceleration waves would have in

bodies composed solely of either of the interpenetrating continua which

make up the composite.

it follows from (3.18) and (3.20) that

b = Ha, (3.29)

wher(
2 22 2 C

H=2 2 (3.30)

(U -2 r C2)r

and it is to be noted that in the "fast" wave, (for which U=UU) J
H= and sgn v = sgn + while in the case of the "slow"l wave, (for

a2+

which U=US), H=HS and sgn Hs=-sgna 2 . Equations (3.17) and (3.29)

together imply that
i•.(i)]= a(I+H),

S((2)

I ( =a(l-rH) , (3.31)

!S

su• 'Aat. wu ,have 4 E~~~

QK>0 I F£

-• (3.32)
Swhile c .~(;F [V)F

I /tK __(;• >Is~)I (.3
S'. - _ --.-- -- --r.
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4. Acceleration Waves in Some Particular Media

We now examine the propagation properties of acceleration waves iii

a number of special situations.

First, let us consider the situation which arises when the expres-

sion (2.20) reduces to

-•(1)-(1) - (1) ) + X2(2)f(2) -ý(2) -(12) ((1)),

pEXp 0 ( )+ 2 p 0 ( )* 1 x( ) , r (4.1)

and we note that any stresses T in each of the constituents of such a

composite depend only on the state of deformation of that constituent and

are independent of the state of deformation of the other constituent. Any

coupling that may take place between the motion of the constituents

occurs because of the existence of the relative body force f. It follows

from (3.26) and (3.27) that in a composite of this type

2 r 2 1 2 2 1 2 r 2C =- V + C (-V2)1 l + +r 1 • 2 = l+r• (4.2)

while

+B 2) (4,3)

When (4.2) and (4.3) are used in (3.23) and (3.24), it is found that two

waves with intrinsic velocities U =V I and U, = V2 respectively, may

propagate. Furthermore, it is easily verified that in these waves

§( 2 ) •jo, LW(1)1 =O. (4.4)

This is precisely the situation which will always arise in theories of

the type developed by Bedford and Stern

Finally, let us turn our attention to the case of a fiber reinforced

composite in which the fiber is not continuous (i.e., chopped fiber).

Suppose that continuum 2 represents the chopped fiber continuum•. For a

composite of this nature r2=0 and consequently Eq. (2.19)2 implies that
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F- '1 , (4.5)

which, with (2.12) and (2.19)1 yields

K= p ( (F(1),w(1) . (4.6)

Under this restrictive circumstance Eq. (4.6), with (2.12), (2.13) and

(3.20), leads to the relations

2 2 "--(1) )
C rc=rC P1 2  •F(1)K(F ,w

1 2 22
( I C 1 2' (4.7)

Por

so that Eq. (3.19) has only one root

2 2 2 l+r 2 2
U = C +C r = 1 +r)C 2 . (4.8)

Thus, in this restrictive case only one wave propagates and, since H= l/r

for this wave, from (3.31)2 (2) 0 so that the acceleration of the

chopped fiber is continuous at the wavefront.

5. Variation of the Amplitudes of Acceleration Waves

In this section we derive the equations which govern the evolu-

tionary behavior of the amplitudes of acceleration waves as they propa-

gate in two-constituient composite materials modeled as interpenetrating

solid continua. We shall suppose that at each instant both "fast" and

"slowP' acceleration waves may exist in the body. For the moment there

is no need for us to distinguish between the two types of acceleration

waves nor do we need to prescribe in detail the conditions which prevail

ahead of the waves.
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The jumps in the material time derivatives of Eqs. (3.8) across the

acceleration wave yield

S+ rpo (5.1)

On setting p=y, F, w and successively, in (3.5) we obtain the

relations

da d 2
2- = -(nU) a + t7"-

at a t x~
2d-b d (1) -2 .x(l)

d t(P•nU)b+ E[' (1)u ~ F ] , (5.2)

the substitution of which in (5.1.) yields

Sda d 1 . U2
2 d- = d' (2nU)a + -[6,k] -U [?)]F]

(5.3)

2 2(bU)b + -- ([• + ]) - ()1
rpo . ... U x

which represent a set of coupled differential equations for a(t) and b(t)

which hold for each admissible propagating acceleration wave.

In order to further simplify Eqs. (5.3) we need to evaluate the

4.... ,-. 4- 4 r-• • R r,;. 1:iffprontiatina Eas-(3.1i) with respect

to time and evaluating the jumps across the wavefront, with the aid of

(3.6), (3.12) and (3.16), we obtain
+

+ * + .l 1 _+ +

il K] = [ýý F] +~ o( F ] + -a + - a ,)bS. . . ..X- 2~ U U 2 3+2 + + 2

- 1 (a+1 a +2+ 1 2 ab + c 2 2b } (5.4)
U

and

*(l ='xa + L2x+ (v"a)b

1 +2 + + 2
(Y l~a + 2f 2 2 ab + 2 2 b (55)

U
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where

~2 {a2GxF U)+r,2(~F (1 1k±)a3( (1).()

and F 1 i+ ( 1 1

(5.6)

: ~with :
2 (1) (1 ) 3 (1 ) (1)

a "=-..?K(FF w F1 )-=po•(F,F ,w) -

=XE +X- +X (a +3 +3a -a

11X k2"2 1 l2 1l1 11al2 +3122 + 222'(1)w(1) 2T A (1) (1)

a (1,w ) oF (i) (F, F ,w )

1 a2 F("'

=x lE - rX2E +X Xl (all + (2 -r)a 1 l 2 + (i1-2r)a 1 2 2 -ra 2 2 2 ),
A - (1) (1) 2 (1) (1)

a 3  K (Fsw F PoF w w (F0 F ,w )

= 2 (a 3 + 2a123 + a2 , +-

2 A (1) (1) 2 A (1) (1)(58

Y122  , (1 )K(FF ,W p= PF(1) V (F,F ,w

=XE4r +~X (a + +r a
1 2 113 123+r 2

2() (1) 2 (' ()

i+hr i2 x+xI(al+ (1-2r)aiJ2-r(2-r)a2+ r ,a2

p, F ,w poF(1) (1)C (F,F w(1)

Xlt (all + (1 -r)al2 ra2),

1 3 2 223

022 0223

1L-r ?t2E2+ XIx2(all~3ral12+3r a122-r a222
(1 1) 2 ()w1) ) .

•23 =•F () •w(1)21(F, F Pi w P]) 0ao• (i) -w (i) (F, P ----

X ( 2a + r 2 a,
;~ ~ - l2 11l3 m r123 )23

t ~while -2--

,• Ei -- 7 , (no sum on i),( .9

- • . .. . ..... -- • • "- -- =,. ..... . • • - : . .. • := = ,z,,,:"•.... ..... •
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3 (12)
3 (2) -(1) -(2) (1)

a ijk W - (F ,F ;w(), i,j,kl, 2 (5.10)

3a.
a -_ _ - (5,11)

aij3 &W(1)

which appear in the last line of each equation in (5.8) are in terms

of the fully equivalent alternate representation. It follows from

Eqs.(2.15) 3, (2.16)3 and (2.18) together with the definitions in (3.12)

that we have

( - F ( 3 -i1 F())) + Ow

+W a ()))W +(()ow , (5.12)

the jump in which, with the aid of (3.16), yields

+ F () -+ a b + w-(1)

3-(FOr (+(le+ ++( +w b~ b.

(5.13)

When the expressions (5.4), (5.5) and (5.13) are substituted in

Eqs. (5.3) we arrive at the coupled differential equations

+

da 2Ia- + 2
II 2- t (2~U -r +- (g ) b- cya1dt(u) +p U poU 2+3 o

70 0 +P U

+ + 2 2 2 2 ( (1+ 2c ab+ 2 2 b I + (CU- H) [XF] + - XF1 (5.14)

and

2 !Lb (gnu) + - (V 2 - ;p(l1- ) + (g 4+ + . (1)g+1 )r-
dt trp 0U 2

1 (1) A+ 1 2,1+p r-;U -Ceg3 3a rp U3 (22b + 2'22ab + 4 2a j

22 +-2
+ F ) . (5.15)rp, 2o . ..
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Of course, b and a are related through Eq. (3.29) and the intrinsic

velocity U is a root of Eq.(3.19). These facts enable us to combine

(3.29) with Eqs. (5.14) and (5.15) in order to obtain a single first order

differential equation which governs the amplitude a(t) of each admissible

acceleration wave. After some tedious algebra, we find that the amplitude

of an admissible type of acceleration wave in a two-component composite

medium satisfies the equation

da2Fa + a-a 2 = 0, (5.16)

where

2(1+rH2 ) (t) =-(l+rH 2 ) A (&nU) +2rH 2 F (gnfl)+ 1 +2 +H 2 )/PU

-I) 2 r2++.(1) 1 (5.17)

Q3g +i-HbF (1) g/p U -rH (g +w

C(t) = , (5.18)
i 2 p U

and

(1 H 2) (a + + 2 3~ 32 (1 + r12 E3Hcel + 3 Jy +(i+H)yE + (1 -rH) X12 22+1 22 '1Hx1 2 2
i 3 2 2

+ f(1 Hi) 3 a +(+i 1-ri 1+H I-rl1 2 al+3(l+H) (l-rH)a 1 1 2 +3(l+H)(1-rH) 122

+ (irH) -a 2- 1 (5-19)S.. .2221

is the effective second order elastic modulus of the composite for the

particular wave under consideration, and where the expression after the

second equals sign is in terms of the fully equivalent alternate repre-

sentation.

Equation (5.16) is a differential equation of Bernoulli type. As

one might expect., it is similar to the equation recently derived by

Nunziato and Walsh16 in their study of the propagation of acceleration

--- - --J L .. . •.az --.z . ..
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waves in granular media. However, a cursory examination of the coeffi-

cients p(t) and C(t) shows that the similarity is somewhat superficial.

The coefficients ýt(t) and C(t) are determined by the particular typcý of

wave under study, the mechanical properties of the composite and by the

conditions prevailing ahead of the wave. We shall study the properties

of the solutions of Eq. (5.16) in a number of particular situations in

the following section.

6. The Behavior of Some Particular Acceleration Waves

in this sectien we study the evolutionary behavior of the ampli-

tudes of some particular acceleration waves. In general, at a given

instant of time, two acceleration waves will propagate in the body.

Suppose that the "fast" wave is located at the poin X= Z F(t) while the

'•slow" wave is at X=Z s(t) where Z F(t) > ZS(t). In order to simplify

mnatters we shall assime that the material ahead of the "fast" wive is in

a steady state of equilibrium. Even though the deformution field behind

a fast acceleration wave may be such that US (t) > UF (t). the "slow" wave

20 1-6
can never pass through the "fast" wave (cf. Nunziato and Was ).

Thus, at all points X > Z (t) the fields y(X) and w(I (X), or alternatively,
(1) (2)

y (X) and y (X) do not depend on t, i.e.,
y=y(X), w (1) -w(I) (X), X > Z (t)

y y (1), y 2y (2) X > Z (t) (6.1)

Since the fields (6.1) must satisfy the equations of equilibrium, at all

points X > (t) we have

U I'ax F + •25 x -+ 0 ,

a92xF 4 2?xF(I) + 3F( 1 ) =-3. (6.2)

-- I
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From (5.16) we see that the equation satisfied by the amplitude a,(t)

of a "fast" wave propagating into a region which is in a steady state of

equilibrium is

d 2
dfF + (t)aF o(t)•=0 (6.3)d- aF 0+Fo

where, from (5.17), with (5.6), (5.7) and the fact that from (3.20) and

(3.23) now U(X) is independent of t, we have

2(~F~tt 2I 2 r• rHFUF2 (1 + rH.) Vo (t) = -(i + ) UFq0,X

(1) (1) 2 (0)
(P2 F + cp3F + rHl9 (6.4)

with

• (0) 2 (0) 2 (0))/plu
Sq0 1 = ~l+2FY1L2 + "rF•22,

S, (01 (o) 2 'AN
i~~ 2= 1 211F 22 +PFP22 )/PoUF' (6.5)

(P 2 F2
(0) - (0) 2 (0)

(= icr1 3 +2H1 F 23 +H P23 )/PoUF,

2 (0) ,(0)
H'= (pUF- 1  )/0 2

(0)
and Mo(t) is still given by (5.18). The superscript 0 occurring in g

0

and on the right-hand sides of the expressions in (6.5) denote that these

quantities are evaluated for the steady-state defoxvation fields described

by (6.1) and, consequently, these quantities are functions of X only and

do not depend on t. Equation (6.3) has the same form as that which

governs the evolutionary behavior of the amplitude of one-dimensional

acceleration waves in a s~ingle phase elastic material wfnich is in a state

of nonhoaognneous deformation ahead of the wave (see, e.g., Chen 2,

Coleman, Grecnberg and Gnrtin 21).

If the material ahead of the "fast" wave is at rest in its natural

stress-fxee state so that
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y=X, WI =0, X > Z P(t)

or
orYI(X) = Y2(X) =X1 X > ZFt W 6"

and it follows from (6.4) that

2 (0) 2
Vo(t) = rH g /2 (l + w = , say, (6.8)

for such a wave so that a F (t) obeys the differential equation

daF 2
dt • ar+•a F (6.9)

which admits the solution

0
a (6.10)

(0) 1) 1

aF

where
3 2

w 2 -pr(6 .11o0 oF ()
i 0 o (il+rll2)E

FFand a F is the value of the mean amplitude of the acceleration wave at

time t =0. Equation (6.10) indicates that the behavior of a "fast"

acceleration wave propagating into a two-comnprnent compoPsite in its

4• natural state is the same as that of an accelcration wave propagating

22
into a homogeneously deformed material with memory or a piezoelectric

23
semiconductor which is in a steady state ahead of the wave

The properties of the solution ( .10) are well documented (see,

e.g., Refs212 and 23) and it is not our intention to study them in detail

here. The critical mean amplitude for acceleration waves, Xo, plays a

fundamental role in determining whether the amplitude of an acceleration
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wave will grow or decay as the wave traverses the material. In particular,

the sign of X0 plays a critical role in determining whether the mean
(0)

amplitude will grow or decay. Since 9 > 0, by assumption, it follows

from (6.8) that w > 0 so that sgn (X) - sgn (E) and it is clear from

(5.B) and (5.19) that F may differ in sign from either El or E2. Notice

that (6.10) implies that

(i) If laF (0) 1 <x,7 then a Ft) -0 monotonically as t-.

(ii) If sgn(aF(0)) =sgnX and IaF(0)I>IXo1, then a (t)-c

monotonically within a finite time

On( 3. - (X /aF(0) (6.12)S= -

and this is usually taken to indicate shock formation,

Next, lot us consider an acceleration wave propagating into a corn-

posite material in which J3 is independent of w(1) so that g(0) =0.

Equation (6.9) now reduces to

da F E 2
dt 3 a. 0 (6.13)

aF(0) (6.14)
a Ct) = (.4

F a(0)E
1+•

2P U
o F

If sgn(a.(0)E) <0, then the solution (6.14) becomes unbounded after a

time

- 0 16.15)

'aF(o)



26.

and, of course, this is precisely what happens in a perfectly elastic

single phase continuum (see, e.g., Green 24).

If the material ahead of the fast wave is at rest sTich that the

center of mass y is in a state of homogeneous strain, we have

y=XX, X=constant, X>ZF(t) . (6.16)

Since F=X, a constant, in this case it follows from Eqs. (6.2) that at

all points X> Z (t) the relative displacem(-ýnt w (I) (X) must satisfy the

nonlinear first--order differential equation

dw (1)
(a 3 82- 3 a 2 ) dX a2, (6.17)

and it is to be noted that both 1 and the coefficients occurring in (6.17)

S.. ... ..... 1 = I N (1) (1)

a.e.(fo fixed t'= 0,function- of ;w / a It is to be
expected tha, even if g +(0) =0, the solution of (6.17) for w (1 ) will

lead to a nonvanishing expression for [1 (t) when substituted into (6.4).

Thus, the coefficient •o(t) will be a consequence of the inhomogeneities

in the deformation fields of the two continua which make up the composite,

as well as Lhe coefficient g +(0). The solution of Eq.(6.3) in this

case is t

a F (0)exP{- J ftt(Sas}

SaF (t) t s (6.18)

l-aF(0) J Co(s)eI[-J iO(t)d}ds

0 0

The properties of the solution have been discussed in detail by a number

of authors (Bailey and Chen 25 Nunziato and Walsh 16) and we refer the

reader to these works for details.

The behavior of "slow" waves is always more complicated than that

of "fast" waves since "slow' waves propagate into regions which are not
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in equilibrium. Thus, in the case of the "slow" wave the coefficients

L((t) and C(t) will contain derivatives with respect to both X and t.

The amplitude of the "slow" wave is given by an expression similar

to (6.18).

In Section 4 we examined the propagation of waves in a number of

special situations. Let us now consider the evolutionary behavior of

the amplitudes of these waves.

We saw in Section 4 that in the restrictive case when the internal

energy is given by (4.1) two waves may propagate with intrinsic veloci-

ties U =V1 and US = V respectively. The equations satisfied by the

amplitudes -f these waves may be deduced from the results of Section 5,

but the properties of the waves in the special highly simplified cases

considered here become more transparent when it is noted that, with the

aid of (2.3), (2.8), (2.9), (2.12), (2.13), (2.21) ard (2.22), Eqs.(3.8)

may be transformed to

a T +--- y (1)
X I (l+r) 0o

byT2 (...(l+r ( (6.19)

It follows from (2.16)3 and (4.1) that

-(12) (1)
P E=-poXl? (1)1 (wI) , (6.20)
o 1 2 w

(1)
and we further assume that a=gw , where g is a negative constant. If

we write (i)] 5 and [(2) -a ( , then an elementary calculation

leads to the growth equations

SdA ( Mi) (i) (i, Wi)2

-i +---4- a - C =0, i11,2 , (6.21)

dt
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where

S(i) 1 C d t TV i((i) (i))2

S0
(6.22)

(i) (i) 3
S/P Vi o 2 M Fi

It follows from (6.19) that at the "fast" wave we have

2

3 (2) 3 V1 9 V22 (6.23)
- it1 X2 p° (2 ) ((1- + r a

(2

so that the third and higher order derivatives of y(2) (Xjt) suffer jump

discontinuities across the "fast" wave. Likewise at a "slow" wave

() (XYt) and its first and second partial derivatives will be continuous

for ll AI , but

3 (1) 3 V2 g _(2)C -( I ( 14t r ) 2 a .(6 . 2 4 )
2 2

1  (14r) (V - V2 )

On the other hand, in materials in which g = 0, the right-hand sides of

the expressions (6.23), (6.24) vanish and the fourth order time deriva-

tives of y(2) and y (1) respectively, suffer jumps across the wavefronts

which are given by the expressions

b 4 y(2) .4F 4((6

[F "i+ ) 2 22 (6.23a)
+or) (VIV

and
2

4(1) 4 V2  (1)J (2) (6.24a)
F 4y /bt S(i) 2 2(2i (lp° (1+ r) (V2_-vI2

The importance of the foregoing is that in a composite of the type

characterized by the restrictive expression (4.1) for the internal energy
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per unit mass, a "fast" wave, moving into a material which is initially

at rest in an equilibrium configuration, will induce a motion in both

constituents of the composite. Notice from (6.22) that the evolutionary

behavior of a particular wave is influenced only by the properties of

one of the constituents and the state of this constituent ahead of the

wavefront. Thus we note that, in particular, the behavior of a "fast"

wave propagating into a composite which is at rest in a homogeneous state

before the arrival of the wavefront is quaalitatively the same as that of

a wave propagating into an equilibrium configuration in a single phase

thermoelastic medium. On the other hand the second constituent of the

composite will be set in motion through the coupling caused by ý because

of the passage of the "fast" wave and consequently (2) will generally

be nonzero even when g = 0.

The expressions (6.23), (6.24), (6.23a), (6 .24a) are also interest-

ing in that, when the internal energy is given by (4.1). it is evident

that the higher order discontinuity induced in the motion of one com-

ponent of the composite because of a discontinuity in the acceleration

of the second component across the wavefront is the result of coupling

affects caused by the relative body force J.

To complete our study we return to the case of a composite in which

one of the components is a chopped fiber. The internal energy density is

(1) _(2)
now given by (4.5) and only one wave, across which 0i 10, LV2] =0,

may propagate in the composite. When Eqs. (2.3), (2.8), (2.12), (2.13)

and (3.8) are combined, it follows that the motion of the chopped fiber

(i.e., component 2 of the composite) is given by the formula

po (2) 0 (6.25)
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with

=-P1) (1)a +g() (6.26)

and once again we assume that g is a positive constant. It follows from

(6.25) and (6.26) that

163 y(2) /t3 1 67 11 -Uaay2/Tt]=-- P3J =-1-(l )-gUfa , (6.27)

iihere a= [2 y (1)/at].

The cne-dimensional behavior of a centrosIn~metric medium of the

tvne under study is characterized by an intern;rl energy density function

( (F),w(1)) which is an even function of w(), i.e.,

(F(i,w()) ,- ) , (6.28)

so that the relative body force 3(F' ,w ) is an odd function of w'!'.

It follows that aF(1)(F (1),)(1)=I = 0 so that if the material ahead

of the wave is in equilibrium in its natural stress-free state then

3 y(2) /t 3 ] = ga/p r (6.29)

3 (2) ',3
while if g=0, ý y 6)tt is continuous for all Xlt but

4 (2) 4[a y /at4I = aw (l)a/p r" (6.30)

Finally, let us consider the behavior of the amplitude of an accel-

eration wave which is propagating into a composite in which one of the

components is a chopped fiber and which is in a steady natural stress-

free state before the arrival of the wave. It follows from Section 5

that the amplitude of the wavefront is governed by Eq. (5.16) with

VI-- -~)

2(l+r) g, C=-- (+/r) (XE +X 2 alII), (6.31)
2PoU
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so that at anytime t the amplitude of the wave is given by

a(t) (6.32)

where X= v/ Thus, in a chopped fiber composite the behavior of

the acceleration wave is qualitatively the same as that in a single

phase beat conducting elastic medium. Notice in particular that the

wave will be undamped if g = 0, in which case (6.32) reduces to the

expression

a(t) - a(0) (6.33)

1 +ga (0) t

The influence of the chopped fiber on the behavior of the amplitude is

evident from the manner in which the parameters r, X2 and g influence

the coefficients 5 and •.
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